实验八 聚合物熔体流动速率的测定

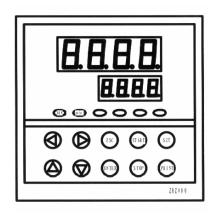
一、实验目的

- 1、学习热塑性聚合物在粘流态时粘性流动的规律。
- 2、掌握聚合物熔体流动速率的测定方法。

二、实验原理

衡量聚合物流动性能的指标有熔体流动速率、黏度等,这里只介绍熔体流动速率。熔体流动速率(MFR)是指热塑性聚合物在一定的温度和压力下,熔体每 10 分钟内通过标准毛细管的重量值,以(克/10 分)来表示。

热塑性聚合物都是利用其粘流态下的流动行为进行加工成型,因此必须在聚合物的流动温度 Tf以上才能进行加工。但是究竟选择高于流动温度多少,要看在 Tf以上粘稠聚合物的流动行为来决定。如果流动性能好,则加工时可选择略高于流动温度,所施加的压力也可小一些。相反,如果聚合物流动性能差,就需要温度适当高一些,施加的压力也要大一些,以便改善聚合物的流动性。


在塑料成型加工中,熔体流动速率是用来衡量熔体流动性能好坏的一个重要指标,对材料的选择和成型工艺条件的确定有其重要的实用价值。其测量仪器通常称为熔体流动速率测试仪。一般说来,对一定结构的高聚物,熔体流动速率愈小,分子量就越高,断裂强度、硬度、韧性、耐老化性能都有所提高。反之,熔体流动速率愈大,表示该塑料熔体的平均分子量愈低,成型时流动性能愈好。因此可用熔体流动速率来比较其分子量的大小,作为控制产品质量的一个指标。此种仪器测得的流动性能指标,是在低剪切速率下测得的,而实际成型加工过程是在较高切变速率的情况下进行。所以在实际加工工艺中,还要研究熔体黏度对温度和切变应力的依赖关系。对某一个热塑性聚合物来讲,只有当熔体流动速率、加工条件、产品性能与实际经验联系起来,它才具有较大的实际意义。

测定结构不同的塑料熔体流动速率,所选择的温度、负荷、试料用量、切割时间各不相同,其规定标准见表 1 和表 2,黏度与分子量之间的关系也不一样,因此它只能表示相同结构聚合物分子量的相对数值,而不能在结构不同的聚合物之间进行比较。熔体流动速率仪及

测定方法简便易行, 在工业生产上应用十分广泛。

三、实验仪器设备

本实验采用 ZRZ 型熔体流动速率仪,该仪器由加热控制系统和试料挤出系统两部分组成,其控制面板及主体结构分别如图 1 和图 2 所示。

熔体流动速率仪是一种简易的毛细管式的,在低切变速率下工作的仪器。仪表面板上有两排数码管显示器,上排数码管为绿色,主要用来显示测量值及各种参数代码,下排显示器为红色,主要用来显示设定值及各种参数。仪表面板上共有5个指示灯,可以分别指示仪表的各种工作状态。

图 1 控制面板

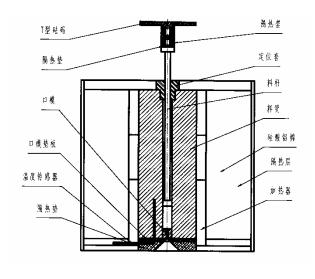


图 2 炉体结构示意图

炉体结构从左至右依次有:

- 1、T型砝码 2、隔热垫 3、口模
- 4、口模垫板 5、温度传感器
- 6、隔热垫 7、隔热套 8、定位套
- 9、料杆 10、料筒 11、硅酸铝棉
- 12、隔热层 13、加热器

主要技术参数:

- 1、温度控制: 范围: 125~400 ℃
- 3、计时钟: 范围: 0~6000s 任意可调
- 4、切割装置:自动定时切割: 10~1000s 任意可调; 点动切割; 手动切割。

- 5、口模内径: Φ2.095±0.005mm Φ1.180±0.010mm 料筒内径: Φ9.550±0.020mm
- 7、负荷: 精度±0.5%

1、标准实验条件见表1

序号	标准口模内径(mm)	试验温度(℃)	负荷(kg)
1	2.095	150	2.106
2	2.095	190	0.325
3	2.095	190	2.160
4	2.095	190	5.000
5	2.095	190	10.000
6	2.095	190	21.600
7	2.095	200	5.000
8	2.095	200	10.000
9	2.095	230	0.325
10	2.095	230	1.200
11	2.095	230	2.160
12	2.095	230	3.800
13	2.095	230	5.000
14	2.095	265	12.500
15	2.095	275	0.325
16	2.095	280	21.600
17	2.095	220	10.000
18	2.095	300	1.200

2. 有关塑料实验条件按表1序号选用。

PE	1, 3, 4, 5, 7	POM	4
PS	6, 8, 11, 13	ABS	8, 9
PP	11, 12, 14	PC	18
丙烯	酸酯 9, 11, 13	纤维素酯	3, 4

3. 共聚、共混和改性等类型塑料可参照上述分类实验条件选用。

4、试样:通常选用聚乙烯粒料或聚丙烯粒料。

四、实验操作步骤

- 1、接通熔体流动速率仪的电源,这时指示灯亮,表示仪器通电。
- 2、根据试样的熔融温度、负荷、行程等设置仪器参数。炉体开始升温,当温度升到设定温度时,将毛细管、压料杆装入料筒内,恒温预热 15 分钟。
- 3、将压料杆取出,按表 2 称取试样并加入料筒中。试样加入时用压料杆压紧,并在 1 分钟内加完,根据选用的实验条件加上负荷。开始用秒表记时。
- 4、试样经 4 分钟预热,炉温恢复到固定温度。在压料杆顶部装上选定的负荷砝码,试样即从毛细管挤出,切去料头 15cm 左右。每隔相等的时间切一段,连续切取五个无气泡样条,待压料杆下降至下环形刻线与料筒口相平时停止取样。整个取样过程,要在压料杆上环形线以下进行。

MFR(g/10min)	试样加入量(g)	切样时间(s)
0.1~0.5	3~4	120~240
>0.5~1.0	3~4	60~120
>1.0~3.5	4~5	30~60
>3.5~10	6~8	10~30
>10~25	6~8	5~10

表 2 试样加入量与切样时间间隔

5、试验方法

①试验方法一

- a. 按表 2 规定的切样时间间隔开始正式切取。保留连续切取的无气泡样条 5 个。
- b. 当压料杆下环形刻线和料筒口相平时,停止取样。
- c. 样条冷却后,置于天平上称重。

②试验方法二

- a. 设定实验参数,将仪器上部杠杆翘起,按[START]键,计时器进入自动计时等待状态。
- b. 料杆下移至特定位置后, 计时器开始自动重新计时, 并切掉无效样条。

- c. 料杆下移至设定的行程,自动计时结束,并切下有效样条,显示器转为显示熔融体积流动速率值,按[PRINT]键可自动打印一系列参数及测试结果。
- 6、每次试验后,必须用纱布擦净标准毛细管、压杆和料筒,模孔用直径合适的黄铜丝 趁热将余料顶出后用纱布擦净。

注意事项

- (1)装料、压料都要迅速,否则试样全部熔融后,气泡很难排出
- (2)试样装入料筒后,要保证预热时间,以便试样熔融,温度均衡。

五、数据处理

熔体流动速率的计算:

MFR=600W/T

式中 MFR 为熔体流动速度(g/10min)

W — 切取样条重量的算术平均值(g)

T — 切样时间间隔(s)

T — 预定测量时间或各个测量时间的平均值 (s)

六、分析讨论题

- 1、什么是熔体流动速率?
- 2、聚合物的熔体流动速率与其分子量有什么关系?

参考文献:

- [1] 晨光化工厂编著,塑料测试,1973
- [2] 北京大学化学系编著, 高分子物理实验, 1983

(执笔人: 傅伟宁)